ISSUE 4 – 2021 (26)

Pages: 264 – 278

Tytuł: Wpływ temperatury na długoterminowe właściwości zapraw zawierających odpadowe szkło i mielony granulowany żużel wielkopiecowy

Title: Effect of temperature on the long-term properties of mortars containing waste glass powder and ground granulated blast furnace slag

Jakub Szydłowski, Wojciech Szudek, Łukasz Gołek*

doi: https://doi.org/10.32047/cwb.2021.26.4.1

StreszczenieAbstract
W artykule przedstawiono wyniki dwuletnich badań właściwości zapraw zawierających mielone szkło, którym zastąpiono 15 lub 30% mas cementu. Zaprawy ze szkłem porównano z analogicznymi zaprawami z dodatkiem granulowanego żużla wielkopiecowego, które dojrzewały w różnych temperaturach. Ponadto, podwuletnim okresie dojrzewania zaprawy poddano autoklawizacji. Zmierzono wytrzymałość na ściskanie próbek, a w części z nich wykonano analizy rentgenograficzne oraz oznaczono zawartość wodorotlenku wapnia, metodą termograwimetryczną. Wyniki potwierdzają, że dodatek mielonego szkła, jako substytutu cementu, może zastąpić granulowany żużel wielkopiecowy. Ponadto nie stwierdzono spadku wytrzymałości, po procesie autoklawizacji dla zapraw z 15% dodatkiem szkła. Dane zebrane w pracy potwierdzają, że właściwości pucolanowe mielonego szkła pozwalają na jego zastosowanie do częściowej substytucji cementu. Badania pokazują również zdolność zapraw, z dodatkiem mielonego szkła, do utrzymywania stałego poziomu wytrzymałości w długim okresie, a nawet po autoklawizacji próbek dwuletnich.The paper presents new and unique results of two-year examinations of mortars containing ground glass, as a substitute for 15 or 30% by mass of ordinary Portland cement in comparison with the properties of mortars with the analogous addition of ground granulated blast furnace slag, in different temperatures. Moreover, after a two-year curing period, the mortars were autoclaved. Samples were subjected to compressive strength measurements, XRD analysis and the determination of calcium hydroxide content, by means of thermogravimetric analysis. The results confirm that as an additive, glass powder, thanks to its pozzolanic properties, can compete with common SCMs like granulated blast furnace slag. Additionally, a reduction in strength was not observed after the autoclaving process, for the mortars with 15% glass addition. The data collected in the paper confirms that the pozzolanic properties of ground glass allows its use as an additive. It also shows the ability of these mortars to maintain a constant level of strength in the long term and even after the autoclaving of two-year-old samples

Pages: 279 – 293

Tytuł: Mikrostruktura i właściwości geopolimerów powstających w procesie alkalicznej aktywacji popiołu lotnego

Title: Microstructure and properties of geopolymers formed in the alkali activation process of fly ash

Krystyna Rajczyk*, Grzegorz Janus

doi: https://doi.org/10.32047/cwb.2021.26.4.2

StreszczenieAbstract
W pracy przedstawiono wyniki badań możliwości otrzymania trwałego betonu geopolimerowego o dużej wytrzymałości, którego podstawowym składnikiem jest popiół lotny. W wyniku przeprowadzonych badań ustalono, że największą możliwość uzyskania betonu geopolimerowego o dużej wytrzymałości wykazały drobnoziarniste, specjalnie wyselekcjonowane popioły krzemionkowe ze spalania węgla kamiennego, nazywane ultra drobnymi popiołami. Jednak beton geopolimerowy, otrzymany przez alkaliczną aktywację tych popiołów 8M roztworem NaOH, nie jest odporny na cykliczne zamrażanie i rozmrażanie. Zastąpienie 15% popiołu lotnego prażoną odpadową gliną oraz stosowanie aktywatora, stanowiącego mieszaninę roztworu NaOH i szkła wodnego, znacznie zwiększyły trwałość tego betonu. Ta modyfikacja składu betonu wpłynęła na zmianę mikrostruktury matrycy w betonie, w której między innymi stwierdzono w badaniach, występowanie krystalicznego kankrynitu.The paper presents the results of the study on the possibility of obtaining high-strength durable geopolymer concrete with fly ash as the basic component. As a result of the research conducted, it was found that the highest potential to obtain geopolymer concrete with high strength was shown for fine-grained, specially selected siliceous ashes from coal combustion. However, the geopolymer concrete obtained by alkaline activation of these ashes with the 8M NaOH solution was not resistant to freeze-thaw cycles. Replacement of 15% fly ash with calcined waste clay and the use of the mixture of NaOH solution and water glass as an activator substantially increased the durability of this concrete. This modification of the concrete composition changed the microstructure of the matrix in the hardened concrete, since the cancrinite was found in the study.

Pages: 294 – 306

Tytuł: Wpływ dodatku tlenku grafenu na poprawę właściwości betonu

Title: Addition of graphene oxide to increase the performance of concrete

Małgorzata Wydra*, Hubert Szulc

doi: https://doi.org/10.32047/cwb.2021.26.4.3

StreszczenieAbstract
Celem przeprowadzonych badań było wyjaśnienie, w jaki sposób dodanie tlenku grafenu do betonu wpływa na jego wybrane właściwości, a mianowicie: wytrzymałość na ściskanie, rozciąganie oraz zginanie, przepuszczalność powietrza, sorpcyjność, nasiąkliwość, mrozoodporność i przewodnictwo ciepła. W analizowanych seriach próbek stwierdzono, że dodatek tlenku grafenu w większości przypadków zmniejszał wytrzymałość na ściskanie. Jednak równocześnie poprawiał wybrane właściwości, a przede wszystkim wytrzymałość na zginanie – poprawa o 7%, i na rozciąganie – poprawa o 6%, w przypadku betonu z dodatkiem 0,005% tlenku grafenu. Jako planowany zakres badań zaproponowano analizy mieszanek betonowych o większej płynności i metody uśredniania mieszanek.The aim of the research was to explain how the addition of graphene oxide [GO] to concrete influences performance parameters such as compressive, tensile, and flexural strength, air permeability, sorptivity, absorbability, frost resistance, and thermal conductivity. It was found that the addition of GO in most cases decreased the compressive strength. Nevertheless, an improvement of selected parameters has been observed, eg, an increase in flexural strength by 7% and a split tensile strength by 6% for concrete with GO in the content of 0.005%. Concrete mixes with higher fluidity and improvement of homogenization procedures are suggested for future research areas.

Pages: 307 – 322

Tytuł:

Właściwości ochronne kruszyw żelazofosforowych w betonie ciężkim, narażonym na promieniowanie gamma z cezu-137

Title: Ferrophosphorus aggregates shielding properties on heavy concrete exposed to gamma-rays, cesium-137 source

Reza Farokhzad*, Amir Dadashi, Ashkan Sohrabi

doi: https://doi.org/10.32047/cwb.2021.26.4.4

StreszczenieAbstract
Celem pracy jest zbadanie liniowego współczynnika tłumienia oraz gęstości próbek wykonanych z żelazofosforu i typowych kruszyw, proszku stalowego oraz proszku nano-krzemionki, w różnych proporcjach. W związku z tym przygotowano 60 próbek betonowych o wymiarach 15×15×15 cm i różnej zawartości wymienionych materiałów. Po pomiarze gęstości wykonano pomiary liniowych współczynników tłumienia próbek poddanych promieniowaniu gamma, emitowanym ze źródła cezu-137. Wyniki badań wykazały, że żelazofosfor był najbardziej efektywnym czynnikiem zwiększającym liniowy współczynnik tłumienia i gęstość betonu. Po żelazofosforze, proszki stali i nanokrzemionki, aczkolwiek w znacznie mniejszym stopniu niż żelazofosfor, zwiększyły gęstość i liniowy współczynnik tłumienia. Największą gęstość – 4395 kg/m3 miała próbka wykonana w 100% z żelazokruszyw i 20% proszku stalowego, bez nano-krzemionki, a najmniejszą gęstość – 2269 kg/m 3, próbka wykonana w 100% z kruszywa typowego i 10% proszku stalowego, bez nano-krzemionki. Największy współczynnik tłumienia liniowego – 0,295 cm-1 dotyczył próbki wykonanej z 65% z żelazofosforu, 30% z proszku stalowego i 5% z proszku nano-krzemionki Najmniejszy współczynnik tłumienia liniowego – 0,151 cm-1 miała próbka wykonana w 8%, z nanokrzemionki, bez dodatku żelazofosforu i proszku stalowego. Wyniki badań wykazały, że gęstość betonu jest bezpośrednio skorelowana z liniowym współczynnikiem tłumienia.This study aims to investigate the linear attenuation coefficient and density of samples made of ferrophosphorus and typical aggregates, steel powder, and nanosilica powder in different ratios. Therefore, 60 concrete samples with dimensions of 15×15×15 cm and different contents of the mentioned materials were prepared. After the density was measured, the linear attenuation coefficients of the samples were measured by gamma radiation emitted from the cesium-137 source. The results showed that ferrophosphorus was the most effective factor in increasing the linear attenuation coefficient and the density of the concrete. After ferrophosphorus, steel and nanosilica powder – although much less than ferrophosphorus – increased the density and linear attenuation coefficient. The sample made of 100% ferrophosphorus aggregate and 20% steel powder without nanosilica powder had the highest density of 4395 kg/m3, and the sample made of 100% typical aggregate and 10% steel powder, without nanosilica powder, had the lowest density equal to 2269 kg/m3. The highest linear attenuation coefficient – 0.295 was related to the sample made of 100% ferrophosphorus, 30% steel powder, and 5% nanosilica powder. The lowest linear attenuation coefficient – 0.151 was related to the sample made of 8% nanosilica, without the ferrophosphorus and steel powder. The results indicated that the concrete density was directly correlated with the linear attenuation coefficient.

Pages: 323 – 339

Tytuł: Ekonomiczny kompozyt cementowy EKC przygotowany z drobnego piasku kwarcowego i nominalnej ilości włókien PVA

Title: An Economical Engineered Cementitious Composite (ECC) prepared with fine quarry sand and a nominal amount of PVA fibers

Fasih Ahmed Khan*, Sajjad Wali Khan, Imad Said, Shabir Hussain

doi: https://doi.org/10.32047/cwb.2021.26.4.5

StreszczenieAbstract
Do produkcji konwencjonalnych kompozytów cementowych [KKC] zużywa się niewielką ilość drogiego, najdrobniejszego piasku kwarcowego [BDPK] o maksymalnej wielkości 250 μm, co negatywnie wpływa na skurcz przy wysychaniu, koszt i praktyczne zastosowanie KKC. W niniejszej pracy opracowano ekonomiczny kompozyt EKC. Wykorzystano zwykły piasek z piaskowni [PP], o niższym wskaźniku miałkości – WM = 2,2 i maksymalnej wielkości ziarna 2350 μm. Wielkość ziaren piasku z piaskowni była dziesięciokrotnie większa, a cena 30.-krotnie niższa niż BDPK. Doświadczalnie wykazano, że EKC, otrzymany z PP wykazuje zjawisko umocnienia odkształceniowego, z wieloma pęknięciami przed zniszczeniem. Sprawdzono również zachowanie się PP w różnych warunkach temperaturowych i stwierdzono niewielki spadek gęstości i wytrzymałości na ściskanie, do temperatury 200°C. Po przekroczeniu temperatury 200°C stwierdzono znaczny spadek wytrzymałości na ściskanie, spowodowany topnieniem włókien poliwinylowych PVA.The production of conventional engineered cementitious composites – ECC consumes low-volume and expensive ultrafine silica sand [UFSS] – maximum size 250 μm, which negatively affecting dry shrinkage, cost and practical application of ECC. This study develops an economical ECC featuring ordinary quarry sand [QS] with a lower fineness modulus – FM = 2.2 and a maximum particle size of 2350 μm. The quarry sand particle size was ten times greater, and the price was 30 times lower than UFSS. The experimental finding was shown that ECC prepared with QS exhibited the strain hardening phenomenon, with multiple cracks produced, before failure. The performance of QS was also checked under different temperature regimes, and a minor decrease in the mass density and compressive strength was observed, up to 200°C. After 200°C, a significant decrease in compressive strength was found, due to the melting of the PVA fibers.

Pages: 340 – 351

Tytuł: Badanie betonu geopolimerowego z kruszywem z żużla żelazochromowego na działanie podwyższonej temperatury

Title: Elevated temperature study on geopolymer concrete with ferrochrome slag aggregates

P. Indu*, S. Greeshma

doi: https://doi.org/10.32047/cwb.2021.26.4.6

StreszczenieAbstract
Niniejszy artykuł dotyczy wytrzymałości i ubytku masy betonu geopolimerowego w porównaniu z konwencjonalnym betonem cementowym, po ekspozycji w podwyższonej temperaturze. W niniejszej pracy kruszywo grube konwencjonalnego betonu geopolimerowego zostało częściowo (40%) zastąpione kruszywem z żużla żelazochromowego w celu uzyskania mieszanki zastępczej betonu geopolimerowego. Omówiono również mikrostrukturę betonu geopolimerowego na podstawie badań XRD, SEM i tomografii rentgenowskiej. W wyniku badań stwierdzono, że po ekspozycji w podwyższonej temperaturze, konwencjonalny beton cementowy wykazuje spadek wytrzymałości większy o 17,65% od konwencjonalnego betonu geopolimerowego. Zauważono również, że zastępcza mieszanka geopolimerowa wykazuje utratę wytrzymałości o 24,4% większą i utratę masy o 1,35% większą niż konwencjonalna mieszanka geopolimerowa. Jednak w większości zakresów temperatur miała ona większą wytrzymałość od konwencjonalnej mieszanki geopolimerowej. Tak więc mieszanka zastępcza betonu geopolimerowego zachowuje się lepiej niż konwencjonalny beton geopolimerowy i konwencjonalny beton cementowy zarówno w warunkach otoczenia, jak i w podwyższonej temperaturze.This paper deals with the strength and mass loss of geopolymer concrete in comparison with conventional cement concrete after elevated temperature exposure. In this study, the coarse aggregates of the conventional geopolymer concrete are replaced partially (40%) with ferrochrome slag aggregates, to obtain the replacement mix of geopolymer concrete. The microstructure of geopolymer concrete was examined by XRD, X-ray tomography, and SEM and also discussed in this paper. The results concluded that after exposure at elevated temperature, the conventional cement concrete has a strength loss of about 18% higher than the geopolymer concrete. It was also noted that though replacement geopolymer mix exhibited the strength loss of 24.4% and mass loss of 1.35% higher than the conventional geopolymer mix, it had greater strength than conventional geopolymer mix, for most of the temperature ranges. Thus the replacement mix of geopolymer concrete behaves better than conventional geopolymer concrete, both at ambient and elevated temperature conditions.

Pages: 352 – 363

Tytuł: Właściwości alkalicznie aktywowanych wałowanych betonów żużlowych wytwarzanych z kruszyw odpadowych

Title: Properties of alkali-activated roller compacted concretes produced from waste aggregates

Saadet Gökçe Gök*, Ismail Kilic, Ozkan Sengul

doi: https://doi.org/10.32047/cwb.2021.26.4.7

StreszczenieAbstract
Zużycie energii i emisja dwutlenku węgla podczas produkcji cementu powoduje potrzebę poszukiwania alternatywnych materiałów budowlanych. Istnieje coraz większe zapotrzebowanie na bardziej przyjazne dla środowiska, bardziej ekonomiczne, trwałe i wytrzymałe materiały. Badania nad recyklingiem odpadów w budownictwie przyczyniają się do zaspokojenia tej potrzeby. W tych badaniach opracowano nowy materiał, który umożliwia ponowne wykorzystanie odpadów, przy użyciu znanych technik. Beton wałowany zagęszczony walcem, aktywowany alkaliami, został wyprodukowany z recyklingu gruboziarnistych kruszyw i zbadano właściwości mechaniczne tego materiału. Celem tych doświadczeń było uzyskanie materiału konstrukcyjnego składającego się z odpadów lub produktów ubocznych. Stosowano zmielony granulowany żużel wielkopiecowy aktywowany krzemianem sodu i 10 – molowym roztworem wodorotlenku sodu. Stosunek Na2SiO3/NaOH w roztworze aktywatora wynosił 2,5. Grube kruszywa uzyskano z odpadów betonu wałowanego i wyprodukowano materiał przyjazny dla środowiska, bez użycia cementu. Ponieważ beton wałowany jest wytwarzany z bardzo gęstą konsystencją w porównaniu do betonu konwencjonalnego, ilość zastosowanego aktywatora jest niewielka, co zapewnia korzyści środowiskowe i ekonomiczne. Wytrzymałość na ściskanie kostkowych próbek betonu wałowanego zbadano po 7 i 28 dniach. Mieszanki wykonane z żużla wielkopiecowego aktywowanego alkaliami uzyskane w tych badaniach i zagęszczonego w trakcie wałowania, osiągnęły wytrzymałość na ściskanie większą od betonu z cementu portlandzkiego,. Określono również gęstość, całkowitą absorpcję wody, prędkość impulsu ultradźwiękowego i moduł sprężystości tego betonu.The energy consumption and the release of carbon dioxide during cement production require the search for alternative building materials. There is an increasing need for more environmentally friendly, more economical, durable and high-strength materials.
Studies on recycling of waste materials in construction contribute to meeting this need. In this study, a new material that allows reuse of wastes was produced using known materials and techniques. Alkali-activated roller compacted concrete [AARCC] was produced with recycled coarse aggregates and the mechanical properties of this material were investigated. In this experimental study, the objective was to produce an alternative construction material composed of waste or by-products. Ground granulated blast furnace slag [GGBFS] was activated with a sodium silicate [Na2SiO3] and 10 M sodium hydroxide [NaOH] solution. The Na2SiO3 / NaOH ratio was 2.5 in the activator solution. The coarse aggregates were obtained from roller compacted concrete (RCC) wastes and an environmentally friendly material was produced without using any cement. As a roller compacted concrete is produced with a very dry consistency compared to conventional concrete, the amount of activator used is low, which provides environmental and economic benefits. The compressive strengths of the cube RCC specimens were determined at the ages of 7 and 28 days. Using the mix proportions designed in this study, it was found that the compressive strengths of alkali-activated RCCs were higher than roller compacted Portland cement concrete having high dosage of cement. Unit mass, total water absorption, ultrasonic pulse velocity [UPV], and modulus of elasticity of alkali-activated RCCs were also determined.

WP Twitter Auto Publish Powered By : XYZScripts.com